If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-396=0
a = 1; b = -3; c = -396;
Δ = b2-4ac
Δ = -32-4·1·(-396)
Δ = 1593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1593}=\sqrt{9*177}=\sqrt{9}*\sqrt{177}=3\sqrt{177}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{177}}{2*1}=\frac{3-3\sqrt{177}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{177}}{2*1}=\frac{3+3\sqrt{177}}{2} $
| (5x+7x)-27=2x+3x | | 9x^2-40x+44=0 | | 41x=95x+237 | | (X-7)(2y-9)=0 | | 4x+26-3x=8+5x-6 | | 3(5a-3)-14a=8-3 | | 15-6-3q=9 | | 435a-3)-14a=8-3 | | Y=x+2/3;(1,1/3 | | h+3/8=-4 | | -5(x+3)-9=-24 | | 4(5a-3)-14a=8-3 | | 9x^2-112x+348=0 | | 1/x^2-3x-7/2x^2-5x-3=2/x(2x+1) | | 4x+4-3×=8+3 | | 23–4=7x+2x | | -42/5=6/5(t-1) | | 6.1+x=3.2 | | 7a=-6+6a | | 8=√(2x-3)+3 | | 8y+9-5y=7+2y-3 | | 2/5(7/8-6x)-3/8=5/8 | | 4x-7-3x+4=25 | | F(x+1)=3x+1 | | 3(6x-3)-4(2x-5)=3(3x+4)-11 | | 3x-100=100-2x | | 7x/10+3=3x/4 | | x-8+3x+2=180 | | 5x+13=5x+3 | | 4c-16=18 | | 4/13x+1/3=2/5-9/13x+2/5 | | 2x^2+4x-42=0 |